Kif4 Interacts with EB1 and Stabilizes Microtubules Downstream of Rho-mDia in Migrating Fibroblasts

نویسندگان

  • Edward J. Morris
  • Guilherme P. F. Nader
  • Nagendran Ramalingam
  • Francesca Bartolini
  • Gregg G. Gundersen
چکیده

Selectively stabilized microtubules (MTs) form in the lamella of fibroblasts and contribute to cell migration. A Rho-mDia-EB1 pathway regulates the formation of stable MTs, yet how selective stabilization of MTs is achieved is unknown. Kinesin activity has been implicated in selective MT stabilization and a number of kinesins regulate MT dynamics both in vitro and in cells. Here, we show that the mammalian homolog of Xenopus XKLP1, Kif4, is both necessary and sufficient for the induction of selective MT stabilization in fibroblasts. Kif4 localized to the ends of stable MTs and participated in the Rho-mDia-EB1 MT stabilization pathway since Kif4 depletion blocked mDia- and EB1-induced selective MT stabilization and EB1 was necessary for Kif4 induction of stable MTs. Kif4 and EB1 interacted in cell extracts, and binding studies revealed that the tail domain of Kif4 interacted directly with the N-terminal domain of EB1. Consistent with its role in regulating formation of stable MTs in interphase cells, Kif4 knockdown inhibited migration of cells into wounded monolayers. These data identify Kif4 as a novel factor in the Rho-mDia-EB1 MT stabilization pathway and cell migration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The formin mDia2 stabilizes microtubules independently of its actin nucleation activity

A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containin...

متن کامل

Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization

In migrating adherent cells such as fibroblasts and endothelial cells, the microtubule-organizing center (MTOC) reorients toward the leading edge [1-3]. MTOC reorientation repositions the Golgi toward the front of the cell [1] and contributes to directional migration [4]. The mechanism of MTOC reorientation and its relation to the formation of stabilized microtubules (MTs) in the leading edge, ...

متن کامل

Dynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension

Neurite extension is regulated by multiple signaling cascades that ultimately converge on the actin and microtubule networks [1]. Rho GTPases, molecular switches that oscillate between an inactive, GDP-bound state and an active, GTP-bound state, play a pivotal role in controlling actin cytoskeleton dynamics in the growth cone, whereas the dynamic behavior and interactions of microtubules are la...

متن کامل

DIP (mDia interacting protein) is a key molecule regulating Rho and Rac in a Src-dependent manner.

Cell movement is driven by the coordinated regulation of cytoskeletal reorganization through Rho GTPases downstream of integrin and growth-factor receptor signaling. We have reported that mDia, a target protein of Rho, interacts with Src and DIP. Here we show that DIP binds to p190RhoGAP and Vav2, and that DIP is phosphorylated by Src and mediates the phosphorylation of p190RhoGAP and Vav2 upon...

متن کامل

A Rho for the kinetochore

Chromosome alignment on the spindle (top) is lost if Cdc42 is inactivated (bottom). N ar um iy a/ M ac m ill an Kyoto, Japan), and colleagues reveal microtubules at the cell cortex, are also needed for microtubule–kinetochore attachments, thus uniting two previously distant fields of study. Rho GTPases are needed during cytokinesis, when Rho helps build a contractile actin ring. Another Rho fam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014